Synthesis of Perhaloalkanesulfonyl Halides and Their Sulfonimide Derivatives

Li-Qing Hu and Darryl D. DesMarteau'

H. L. Hunter Chemistry Laboratory, Clemson University, Clemson, South Carolina 29634- 1905

Received June **3, 1993'**

Several perhalogenated alkanesulfonyl halides, R_1S_2X ($R_f = CF_3CF_2$, $CF_3CF_2CF_2$, $CICF_2CF_2CF_2$, $CF_3-F_3-F_3-F_4$ CC1₂, CFC1₂; X = C1, F) and 1,6-bis(halosulfonyl)perfluorohexanes, $XO_2S(CF_2)_{6}SO_2X$ (X = C1, F), have been prepared via the sodium sulfinates obtained from dehalogenosulfination reactions of the respective alkyl halides. Selected sulfonyl fluorides were further converted to the amides $R_xSO_2NH_2$ and imides $(R_xSO_2)_2NH$.

Introduction

Perhalogenated alkanesulfonyl halides are extremely useful intermediates in synthesis. Sulfonyl fluorides are used commercially in the preparation of ion-exchange resins, surfactants, and very strong acids, such as sulfonic acids and sulfonimides; their preparation and properties are summarized in a recent review.'

The most common method for synthesis of perfluoroalkanesulfonyl fluorides is electrochemical fluorination (ECF) of the corresponding alkanesulfonyl fluorides or chlorides.2 A major disadvantage of this ECF method is that the yields of perfluoroalkanesulfonyl fluorides often decrease dramatically with the size of the alkyl group and, as a laboratory-scale synthesis, ECF is difficult and dangerous. Fluorinated sulfonyl fluorides have also been synthesized by the reaction of corresponding sulfonyl chlorides with CsF3 and KF4 and by the reaction of sulfonic acid anhydrides with NaF.⁵ The latter reactions are historically a matter of convenience, since the sulfonic acids are the precursors and the acids are obtained via hydrolysis of the acid fluorides from ECF. Other methods include the reaction of fluorinated olefins with sulfuryl fluoride and CsF,⁶ the rearrangement and decarboxylation of fluorinated sultones? and the reaction of $CISO₂F$ with tetrafluoroethylene. 8

An attractive alternative route to a variety of perhaloalkanesulfonyl chlorides is dehalogenosulfination.^{9,10} This method provides a route to many compounds that are difficult or inaccessible by other routes and is easily applied in the laboratory to readily available starting materials. Herein we report the extension of this method to several new alkanesulfonyl halides of interest as precursors to novel sulfonimides.^{11,12}

Abstract published in *Aduance ACS Abstracts,* October 1, 1993.

- (1) (a) Hu, L. *Q.;* Huang, W. Y. *Youji Huaxue* 1989,9,498. (b) Hass, A.; Perfluorohalogenoorgano Compounds of Main Group Elements. Gmelin *Handbook of Inorganic Chemistry,* 8th ed.; Koschel D., Ed.; Springer-Verlag: New York, 1987; Suppl. Vol. 3, pp 152-206.
- (2) (a) Brice, T. J.; Trott, P. W. **U.S.** Pat. 2,732,398, 1956; *Chem. Abxtr.* **1956,50,** 13982h. (b) Gramstad, T.; Haszeldine, R. N. *J. Chem.* **Soc.** 1956,173. **(c)** Hollitzer,E.;Sartori, P. *J. FluorineChem.* 1987,35,329.
- (3) Radchenko, 0. A.; II'Cenko, A. Ya.; Markovskii, L. N.; Yagupol'skii, L. M. *J.* Org. *Chem. USSR (Engl. Transl.)* 1978, *14,* 251.
- (4) Benefice-Malouet, S.; Blancou, H.; Teissedre, R.; Commeyras, A. J. *Fluorine Chrm.* **1986,** *31,* 319.
-
- (5) Tiers, G. **V.** D. *J. Org. Chem.* 1%3,28, 1244. (6) Temple, *S.* J. **Org.** *Chem.* 1968,33, 344.
- (7) Krylov, I. I.; Kutepov, A. P.; Sokol'skii, G. A,; Knuyants, I. L. *Izu. Akod. Nauk SSSR, Ser. Khim.* 1990, 2448.
- (8) Tiers, G. **V. D.;** Koshar, R. J. US. Pat. 2,877,267, 1959; *Chem. Abstr.* (9) Huang, W. Y.; Huang, B. N.; Hu, C. **M.** *J. Fluorine Chem.* 1983, 23, 1959, **53,** 14002g.
- **(IO)** Huang, W. Y.; Wang, W.; Huang; B. N. *Acra Chim. Sin. (Engl. Ed.)* 193; 19M,42, 114.
- 1985, 253.

Table I. Conversion **of** Perhaloalkyl Halides to Alkanesulfonyl Chlorides

R SO ₂ Cl	vield. % (two steps)	bp (mp), ۰c	RAX	R ₁ SO ₂ Cl	vield. % (two steps)	bp (mp) , ۰c
3a	81	56	1d	3d	70	(60)
3b	80	75	1e	3e	53	(55)
3c	84	150	1f	3f	70	(68)
	Chlorides					

Results and Discussion

The dehalogenosulfination reaction provides an excellent route to a number of perhaloalkanesulfonyl chlorides by chlorination of the corresponding intermediate perhaloalkanesulfinates as summarized in Table I.

$$
R_rX + Na_2S_2O_4 \xrightarrow[NaHCO_3 or Na_2HPO_4]{CH_3CN-H_2O} R_rSO_2Na
$$

1

$$
R_rSO_2Na + Cl_2 \xrightarrow{H_2O} R_rSO_2Cl
$$

2
3

$$
R_f X = R_f C F_2 I, {}^{13} R_f C F_2 B r, {}^{14} R_f C C I_3, {}^{15} C F_3 C F_2 I
$$
 (1a),
CF₃CF₂CF₂I (1b), CICF₂CFCICF₂CF₂I (1c),
CF₃CCI₃ (1d), CFCI₃ (1e), I(CF₂)₆I (1f)

The relative ease with which haloalkanes undergo the dehalogenosulfination reaction corresponds qualitatively with the energy of the bond to be broken, viz., $R_fCF_2I > R_fCF_2Br > R_fCCl_3$. The dehalogenosulfination reaction with compounds **la-c** proceeded much more readily than with compounds **ld,e.** However, a single primary or even a secondary chlorine atom is always unreactive. As an excellent example of this, **IC** gaveonly thedeiodosulfination product **2c.**

Halide exchange reactions of the mono- and bis(sulfony1) chlorides with KF in CH₃CN at room temperature proceeded

- **(1** 1) Prsentedinpartatthe 10th **WinterFluorineConferenccofthe** American Chemical Society, St. Petersburg, **FL,** Jan 28-Feb 2,1991; **scc** Abstract
- 83. (12) After this work was completed, a paper duplicating **some** of these results for RpSOzX **(X** = CI, F) appeared: Qiu, W.; Burton, D. J. *J. Fluorine Chem.* 1993,60,93-100.
- (13) Huang, W. *Y.;* Wang, W.; Huang, B. **N.** *Acra Chim. Sin. (Engl. Ed.)* 1986, 178.
- (14) (a) Huang, W. Y.; Wang, W.; Huang, B. N. *Acta Chim. Sin. (Chin. Ed.)* 1986, 44, 173;1985, 43, 1167. (b) Zhang, Y. F.; Kirchmeier, R.; Shreeve, Jean'ne M. *Inorg. Chem.* 1992, 31, 492.
(15) Huang, W. Y.; Chen, J. L.; Huang, B. N. Acta Chim. Sin. (Chin. Ed.)
- **1986,** 44, 45, 484; *ibid. 1984,* 42, 11 14.

in high conversion and yield to the respective sulfonyl fluorides (Table **11).**

$$
R_1SO_2Cl + KF \rightarrow R_1SO_2F + KCl
$$

3

$$
R_f = CF_3CF_2(a), CF_3CF_2CF_2(b),
$$

ClCF_2CFCICF_2CF_2(c), -(CF_2)₆- (f)

We found that very dry and finely powdered KF and very dry solvent (CH_3CN) were critical for high conversions and yields of the sulfonyl fluorides. For example, fluorination of **3f** using reagent grade $CH₃CN$ and KF, led to hydrolysis and a mixture of products. $R_f = Cr_3Cr_2$ (a), $Cr_3Cr_2Cr_2$ (b),
CICF₂CFCICF₂CF₂ (c), –
We found that very dry and finely powdered KF as
solvent (CH₃CN) were critical for high conversion
of the sulfonyl fluorides. For example, fluorination
reag

$$
ClO2S(CF2)6SO2Cl + H2O \xrightarrow{CH3CN, KF}
$$

\n
$$
KO3S(CF2)6SO3K, KO3S(CF2)6SO2F, others
$$

In order to obtain pure compound **4c,** we used an alternative solvent sulfolane. After complete reaction, **4c** was easily separated from sulfolane by distillation, whereas it was very difficult to separate compound 4c from CH₃CN.

Since **bis(perfluoroalkysulfony1)imides** exhibit potentially useful electrochemical properties,¹⁶ high Brønsted solution and gasphase acidities,¹⁷ and novel solid-state structures as metal salts,¹⁸ these compounds are under extensive investigation in our laboratory. Extension of this research to several new sulfonyl fluorides in this **work** was therefore of interest. Using established methodology for the synthesis of sulfonimides from the respective sulfonyl fluorides,^{17a,19} several new examples were prepared as summarized **in** Scheme I and Table **111.**

In an attempt to avoid the conversion of **3** to **4** for the preparation *of* the sulfonamides **(5)** reactions of 3 with **NH3** to give **5** were attempted.

- B. *Eur. J. Solid Store Inorg. Chem.* **1992,29,777.** (b) DesMarteau, D. D.; Pennington, W. T.; et al. In preparation.
- (19) (a) Singh, **S.;** DesMarteau, D. D. *Inorg. Chem.* **1990, 29, 2982.** (b) DesMarteau, D. D.; Witz, M. J. *Fluorine Chem.* **1991, 52,** 7.

Table **111.** New **Bis(perfluoroalkylsu1fonyl)imides**

R_1SO_2F	$R_1SO_2NH_2$	$R_fSO_2N(Na)SO_2R_f'(R_f/R_f')$	R_1SO_2N - (H)SO ₂ R _f '
ia	5а	(C_2F_5/C_2F_5) 6a	7а
١a	5а	(C_2F_5/CF_3) 6a'	7a'
4b	5b	(C_3F_7/C_3F_7) 6b	7Ъ
1b	5b	(C_3F_7/CF_3) 6b'	$T_{\mathbf{b}'}$
$\mathsf{CF}_3\mathsf{SO}_2\mathsf{F}$.	$CF_3SO_2NH_2$	$(CF3/CICF2CFCICF2CF2)$ 6c'	7с′
		$(CF_3/CF_2=CFCF_2CF_2)$ 6g ^a	7ε
	^a From 6c'; see Scheme I.		
	NH,		
		$R_sSO_2Cl \longrightarrow R_sSO_2NHNH_4 + R_sSO_2NH_2 + \text{others}$	

$$
R_f = CF_3CF_2, CF_3CCl_2
$$

In addition to the desired **5,** this reaction resulted in several unidentified products. Pure **5** could be obtained from this mixture by acidification and recrystallization, but the yields of **5** from the sulfonyl fluorides **(4)** were much higher.

Unsuccessful attempts were made to convert **Sd** to *6d* to prepare the sulfonimide $(CF_3CCl_2SO_2)_2NH$ (7d). However metalation of **Sd** with NaOMe failed. Similarly **Se,** which is not included in this work due to incomplete characterization, could not be metalated by NaOMe.

Adequate characterization of all compounds is provided in the Experimental Section. The sulfonyl fluorides **4a,b** have **been** known for a long time,2 but we could not find any spectroscopic data for these compounds. The I9F NMR of compounds **(c)** containing the $CICF_2CFCICF_2SC_2$ groups are interesting. The fluorines **on** the methylene carbon bound to sulfur are diastereotopic in every case except for $CICF_2C^*FCICF_2CF_2SO_2$ -Na **(Zc),** where the observed spectrum is apparently first-order. For 3c-7c, very typical AB patterns are observed for the -CF₂- SO_{2-} fluorines with $J/\delta \simeq 0.5$. This situation is very similar to that for compounds of the type $RC^*FCIOCF_2CF_2SO_2F$, where the $-OCF_{2}$ - methylene fluorines are similarly affected by the chiral carbons.20

The new sulfonimides **7** are very acidic, as indicated by the IH NMR. The infrared spectra for these compounds do not exhibit a typical sharp $\nu(N-H)$ as has been observed in favorable cases,^{17a} due to the very hygroscopic/deliquescent nature of the compounds. **In** every case, our sampling techniques gave only a broad absorptions near 3500 and 1600 cm-I, indicating the absorption of water by the very acidic sulfonimides.

Compounds **74** and **7b,b'** have provided useful new acidity values for superacids in the gas phase. The latter will be reported separately.17b Compound **6g** was prepared as a potential precursor to a functionalized polymer, but attempts at both homopolymerization and copolymerization with C_2F_4 were unsuccessful.²¹ The use of **4f** for the synthesis of a novel difunctional sulfonimide and in other related applications is in progress.

Experimental Section

Geaenl Methods. IR spectra were recorded on **a** Perkin-Elmer **1430** spectrometer with a Model 7500 data station. A 10-cm gas cell fitted with KCI or AgCl windows was used for gas samples. Solids were sampled as Nujol mulls or thin films between AgCl or KCl windows. ¹H (200.13 MHz) and ¹⁹F (188.31 MHz) NMR spectra were measured using solutions of **1-2** mmol/L concentrations in an appropriate deuterated solvent with CFCI₃ as an internal standard. The sensitivity of the ¹⁹F NMR allows the detection of fluorine-containing impurities at a level of **ca.** 0.5%. Unless indicated otherwise, samples were a minimum of *99.5%* pure by **19F** NMR. Compounds without hydrogen were checked by IH NMR for

~ ~~

⁽¹⁶⁾ (a) Razaq, M.; Razaq, A.; Yeager, **E.;** DesMarteau, D. D.; Singh, **S.** J. *Appl. Electrochem.* **1987,17,1057. (b)** Razaq, M.;Razaq,A.;Yeager, E., DesMarteau, D. D.; Singh, S. J. Electrochem. Soc. 1989, 136, 385.

(c) Appleby, A. J.; Velev, O. A.; LeHelloca, J.-G.; Parthasarthy, A.; Sinixasan, A.; DesMarteau, D. D.; Gilette. M. S.; Ghosh, J. K. J.
Sinixasan, A.;

⁽¹⁷⁾ (a) Foropoulos, J., Jr.; DesMarteau, D. *D.Inorg. Chem.* **1984,23,3720. (b)** Taft, R. W.; DesMarteau, D. D. **In** preparation. **(1 8)** (a) DesMarteau, D. D.; Zuberi, **S. S.;** Pennington, **W.** T.; Randolph, **B.**

⁽²⁰⁾ Storzer, W.; DesMarteau, D. D. J. *Fluorine Chem.* **1992**, 58, 59. (21) Polymers containing the bis(perfluoroalkylsulfonyl)imide group l

^{(2 1}) Polymers containing the **bis(perfluoroalkylsulfony1)imide** group have been successfully prepared using ally and vinyl ether monomers: Sung, K.; DesMarteau, D. *D.Polym. Preprints* **1992, 33 (2), 168.**

hydrogen-containing impurities and were found to be free of impurities by the procedures given.

Mass spectra were obtained with a Hewlett-Packard 5985-B **spec**trometer, at 70 eV, for E1 and CI (CH4) with the sample introduced by direct injection. Appropriate isotope ratios were observed for chlorinecontaining compounds, and only the $35C1$ ions are given. The absence of mass spectra for certain volatile samples is due to the fact that our mass spectrometer has only operated sporadically over the last 1.5 years and is under replacement.

Reagents. The starting materials Na₂S₂O₄, NaHCO₃, KF, Zn, etc. were obtained from commercial sources. Active KF was prepared by fusion in a Pt dish followed by pulverization in a drybox. Acetonitrile was dried by distillation twice over CaH2 and **PzOs** and was stored over molecular sieves. Starting RrX **(1)** were obtained from PCR, Inc.

Preparation of Sodium Perhaloalkanesulfinates 2. A typical procedure for the preparation of *2c* is described. In a 1000-mL three-necked flask provided with a dropping funnel, an efficient reflux condenser, and a magnetic stirrer, was placed $100g$ of Na₂S₂O₄ (0.5 mol), 82 g of NaHCO₃ (1.0 mol) , $250 \text{ mL of } H_2O$, and $150 \text{ mL of } CH_3CN$. With rapid magnetic stirring under a nitrogen atmosphere, 100 **g** of **IC** in a 100-mL dropping funnel was added dropwise to the reaction mixture over 1 h at 40° C. The reaction was continued for 15 h at 40 °C. The reaction mixture was then distilled to remove $CH₃CN$ and extracted with 300 mL of ethyl acetate, and the extract was washed with aqueous NaCl (saturated, 3 **X** 100 mL) to remove inorganic salts. Evaporation of ethyl acetate and water under vacuum gave dry solid product *2c* (82 **g);** yield 91.6%. All compounds 2 decompose near 300 °C without melting.

2c IR (solid, KCI) 1465 (w), 1376 (m), 1356 (m), 1263 (vs), 1173 (vs), 1145 (vs), 11 15 (vs), 1077 (vs), 1054 **(s),** 1030 **(s),** 956 **(s),** 904 (m), 842 (m), 797 (m), 778 (m), 726 (m), 683 (m), 646 (m), 613 (m) cm-I; **19F** NMR (acetone-&, D20) **CICF2ACFWlCF2CCF2DS02Na,** A -63.3 (2F, **s),** B -130.3 (lF, **s),** C -114.2 (2F, **s),** D -127.8 ppm (2F, **s).**

2.: IR (solid, KCl) 1343 (m), 1204 (vs), 1146 (vs), 1115 (vs), 1073 (vs), 955 (m), 743 (w), 646 (w) cm⁻¹; ¹⁹F NMR (acetone- d_6) CF₃A- $CF₂BSO₂Na$, A -79.1 (3F, s), B -132.2 ppm (2F, s).

2b: IR (solid, KCl) 1340(s), 1288(s), 1216(vs), 1182(vs), 1127(vs), 1075 (vs), 1020 (vs), 833 (m), 737 (m), 677 (m), 603 (m), 532 (m) cm-'; ¹⁹F NMR (CD₃CN + D₂O) CF₃^ACF₂^BCF₂^CSO₂Na, A -80.8 (3F, t), B -126.4 (2F, **s),** C -131.6 ppm (2F, 9). *JAC=* 9.0 Hz.

2d: IR (solid, KCI) 1245 (vs), 1175 (vs), 1085 (vs), 1036 **(s),** 997 **(s),** 966 **(s),** 909 (m), 864 (m), 798 (w), 701 (w), 663 (m), 627 (w), 538 (m) cm⁻¹; ¹⁹F NMR (D₂O/acetone-d₆) CF₃CCl₂SO₂Na, -71.4 ppm (s).

k: IR (solid, KCI) 1348 (w), 1122 (vs), 1001 (vs), 827 (m), 673 **(s),** 664 **(s),** 603 (m), 581 (m), 538 (m), 484 (m) cm-I; I9F NMR (D20) CFC12S02Na, -68.9 ppm **(s).**

2f: IR (solid, KBr) 1209 (vs), 1199 (vs), 1139 (vs), 1103 (vs), 1080 (vs), 1030 (vs), 965 (m), 810 (w), 694 (m), 622 **(s),** 599 (m), 574 (m), 466 (s), 412 (m), 373 (w) cm⁻¹. ¹⁹F NMR (acetone- d_6) (CF₂CCF₂B-CF2AS02Na)2, A -131.2 (4F, **s),** B -122.9 (4F, **s),** C -122.5 ppm (4F, **SI.**

Preparation of 3 by Chlorination of 2. A typical procedure for preparation of 3c is described. A 1000-mL three-necked flask, provided with a magnetic stirrer, a gas inlet tube, and a reflux condenser, was utilized. The upper end of the reflux condenser was connected with a washing bottle filled with concentrated NaOH(aq). A solution of compound *2c* (80 **g)** dissolved in 250 mL of H2O was rapidly stirred while excess Cl₂(g) was bubbled into the reaction solution at \sim 0 °C over 0.15 h. **Theproduct3cisinsolubleinwaterandformsalowerlayer.** Separation and washing with an aqueous solution of NaHCO₃, drying over molecule sieves, and distillation gave pure liquid product **3c** (76 g); 91.6% yield.

3c: bp = 150 *OC;* IR (liquid, KCI) 1417 (vs, SOzCl), 1279 **(s),** 1275 (vs), 1200 (vs), 1124 **(vs),** 1056 (vs), 960 **(s),** 912 **(s),** 867 **(s),** 807 (m), 756 **(s),** 708 **(s),** 686 **(s),** 619 (s) cm-I; I9F NMR (CDCl3) CICFzACFB- $CICF₂$ ^CCF₂^{D,E}SO₂Cl, A -64.1 (2F, s), B -131.5 (s), C -112.1 ppm (2F, major *m/z* [CI] 351 (3, M+), 267 [66, (M - S02F)+], 251 [loo, **(M s**), D-103.9, E-100.7 ppm (2F, AB pattern), $J_{DE} = 227 \text{ Hz} (J/\delta = 0.50);$ $SO₂Cl$ ⁺].

3a: bp = 56 °C; IR (liquid, KCl) 1425 (SO₂Cl, vs), 1321 (vs), 1235 (vs), 1212 (vs), 1134 (vs), 979 (vs), 762 (w), 653 (w), 619 (m), 594 **(s),** 553 (s), 527 (s) cm⁻¹; ¹⁹F NMR (CDCl₃) CF₃^ACF₂BSO₂Cl, A -77.9 (3F, **s),** B -109.9 ppm (2F, 9).

3b: bp = 75 °C; IR (liquid, KCl) 1424 (vs, SO₂Cl), 1335 (vs), 1286 (vs), 1224 (vs), 1141 (vs), 1092 (vs), 1049 (vs), 932 (m), 861 **(s),** 814 (m), 747 **(s),** 685 **(s),** 656 (m), 628 **(s),** 612 **(s),** 603 **(s),** 525 **(s)** cm-I; $(2F, t)$, C -105.8 ppm $(2F, qt)$, $J_{AC} = 9.5$, $J_{BC} \le 1.0$ Hz. ¹⁹F NMR (CDCl₃) CF₃^ACF₂^BCF₂^CSO₂Cl, A -81.1 (3F, t), B -124.1

3d: $mp = 60 °C$; $bp = 121 °C$; IR (solid, KCl) 1403 (SO₂Cl, vs), 1210 (vs) , 912 (m), 886 (m), 833 (m), 717 (m), 603 (m), 568 (s), 515 (s) cm⁻¹; ¹⁹F NMR (CDCl₃) CF₃CCl₂SO₂Cl, -71.7 ppm *(s); m/z* [EI] 151 [100, $(M - SO₂Cl)⁺$], 116 [8.0, $(M - SO₂Cl₂)⁺$].

3e: mp = 55 *OC;* IR (solid, KCI) 1392 (vs, SOzCl), 1181 (vs), 1084 (vs), 879 **(s)** cm-I; I9F NMR (CDCl3) CFC12S02C1, -57.5 ppm **(8);** *m/z* [EI] 101 [100.0, $(M - SO₂Cl)⁺$].

3f: mp = 68 °C; IR (solid, KBr) 1409 (vs, SO₂Cl), 1393 (w), 1218 (vs), 1177 **(s),** 1142 (vs), 11 11 (m), 969 (w), 701 (w), 677 (w), 621 (w), 602 (w), 538 **(s),** 520 **(s),** 290 (w) cm-I; I9F NMR (CDsCN) (CFzC-CF2BCF2AS02C1)2, A -104.7 (4F, **s),** B -119.2 (4F, **s),** C -121.2 ppm (4F, **s).**

Preparation **of 4 by Reaction with KF. Method A.** A typical procedure for the preparation of **4c** is described. **In** a 1000-mL vessel, as in the preparation of **k,** was placed 250 mL of dried sulfolane, 1 **OOg** of activated KF, and 100 **g** of **3c.** The reaction mixture was stirred under dry nitrogen for 3 days at room temperature. After reaction was complete as monitored by ¹⁹FNMR, the product was collected by pumping under vacuum through a trap at -196 °C. Distillation (740 mm) of the contents of the -196 °C trap gave pure **4c** (77 **g,** 81%) as a colorless liquid.

Method B. As above, 150 mL of dry CH₃CN, 11.6 g of activated KF, and 14.8 g of distilled 3c were stirred under dry N₂ at 22 °C for 3 days. 19F NMR indicated complete conversion to **4c.** Distillation gavea solution of **4c** in CH3CN (1 50 mL), which could be used directly for the preparation **6c.**

4c: bp = 130 OC; IR (liquid, KCI) 1458 (vs, S02F), 1240 **(s),** 1193 (vs), 822 **(s),** 752 **(s),** 702 **(s),** 686 **(s),** 649 (m), 615 **(s),** 575 **(s),** cm-l. ¹⁹F NMR (CD₃CN) CICF₂^ACF^BCICF₂^CCF₂^{D,E}SO₂F^G, A-63.9 (2F, m), B -131.2 (lF, m), C -112.4 (2F, m), D -107.98, E -101.57 (2F, AB pattern), G45.9 ppm (s), $J_{DE} = 254 \text{ Hz} (J/\delta = 0.57)$, other small coupling constants not readily determined; major m/z [CI] 315.0 [1.1, $(M - F)^+$], 251.0 $[100, (M - SO₂F)⁺].$

4a: $bp = 8 °C$; IR (4 Torr, KCl) 1475.2 (vs, SO₂F), 1256.4 (vs), 1151.4 **(s), 817.8 (s)**, 615.4 **(s)** cm⁻¹; ¹⁹F NMR **(CD₃CN)** CF₃^ACF₂B-**S02F,A-79.1(3F,d),B-111.9(2F,d),C45.7ppm(lF,** tq(sixlines)), J_{AC} = 7.1, J_{BC} = 6.3 Hz.

4b bp = 36 'C; IR (5 Torr, KC1) 1475 (S02F, vs), 1345 **(s),** 1293 **(s),** 1252 (vs), 1150 (vs), 1111 **(s),** 1066 (m), 957 (w), 887 **(s),** 816 **(s),** 801 **(s),** 749 **(s),** 684 (m), 631 **(s),** 575 **(s),** 533 **(s)** cm-I; I9F NMR -109.0 (2F, q), D 46.2 ppm (lF, **s),** *JAC* = 4.3 Hz. (CD3CN) CF3ACF2BCF2CS02FD, **A** -80.6 (3F, t), B -124.7 (2F, **s),** C

4f: bp = 167 °C; IR (liquid, KCl) 1461 (SO₂F, vs), 1216 (vs), 1151 (vs), 818 **(s),** 679 (m), 627 **(s),** 540 **(s)** cm-I; 19F NMR (CDCI3) (CFzA**s),** D 46.2 ppm (2F, **s).** CF_2 ^BCF₂^CSO₂F^D)₂, A -121.9 (4F, s), B -120.7 (4F, s), C -108.5 (4F,

Preparation of 5 by Reaction of 4 witb NH3. A typical procedure for the preparation of **Sa** is described. Compound **4a,** 7.0 **g** (0.0346 mol), was bubbled into 200 mL of partially frozen NH3 within 0.5 h. The reaction mixture was kept at -78 °C for 1 h in a 500-mL three-neck flask with magnetic stirrer and slow flow of dry N_2 to exclude moisture. The excess of ammonia was then removed by allowing the mixture to warm to room temperature under a flow of dry N_2 , leaving a white solid, 8.0 g. The solid product (CF₃CF₂SO₂NHNH₄ and NH₄F) was acidified with 30 mL of H₂SO₄ (50%) followed by 50 mL of CH₃CN. Filtration gave a two-layered solution. The upper layer was separated from the mixture, and its volume was reduced to ~ 10 mL. Standing overnight gave a white crystalline product, which was collected by filtration and dried under vacuum, giving **Sa:** 6.2 **g** (yield 90.0%); mp = 58 *OC;* IR (solid, KCI) 3300 (vs), 1394 (vs), 1385 **(s),** 1328 (vs), 1217 (vs), 1158 (vs), 1067 (vs), 1014 (vs), 880 **(s),** 851 **(s),** 760 (m), 616 (m) cm-I; 19F NMR (CD₃CN) CF₃^ACF₂^BSO₂NH₂, A -78.8 (3F, s), B -117.5 ppm (2F, s); ¹H NMR (CD₃CN) 7.0 (NH₂, s); major *m/z* [CI] 200 [100, (M $+1$ ⁺], 80 [61.4, (M – C₂F₃)⁺], 64 (25.8, SO₂+).

Compound 5b was prepared in an identical manner in 92% yield: mp = 52 OC; IR (solid, KCl) 3392 **(s),** 3296 (9). 1393 **(vs),** 1370 (vs), 1340 **(s),** 1286 **(s),** 1210 (vs), 1136 (vs), 1066 **(s),** 856 **(s),** 746 (m) cm-l; I9F -1 13.4 ppm (q), *JAC* = 9 Hz; 'H NMR (CDC13) 5.6 (NHz, *s);* major *m/z* NMR (CDCl₃) CF₃^ACF₂^BCF₂^CSO₂NH₂, A -81.2 (t), B -125.0 (s), C [CI] 250 $[100, (M + 1)^+]$, 80 $[60, (M - C_3F_7)^+]$, 64 $(22, SO_2^+)$.

Preparation of 5qd by Reaction of 3qd with NH3. In a 250-mL flask were placed 10.0 **g** of **3d** and 50 mL of CHCl3. The stirred solution was cooled to -60 °C. Ammonia and N_2 were bubbled into the solution for 40 min, and the mixture was stirred at -60 °C for 2 h. After the mixture had warmed to 22 °C, the white solid was collected by filtration, (10.0 g) and was identified by ¹⁹F NMR as a mixture of $CF₃CC1₂SO₂NHNH₄$

 (-71.0 ppm) , $CF_3CCl_2SO_2NH_2(-72.3 \text{ ppm})$, and one fluorine-containing byproduct $(-75.5$ ppm) $(\sim 20\%)$.

A sample of this mixture (1 *.O* **g)** was dissolved in 5 mL of H20, and 2 mL of H2SO4 (98%) was added to the solution. After the mixture had cooled to room temperature, needle crystals formed, which werecollected by filtration, dried, and identified as pure 5d (0.5 g) : mp = 130 °C; IR (solid, KCl) 3356 (s), 3259 (s), 1342 (s), 1234 (vs), 1200 (vs), 1170 (vs), 1062 (s), 716 (s), 612 (m), 558 (m), 489 (m) cm⁻¹; ¹⁹F NMR (CD₃CN) -72.3 ppm **(8);** IH NMR (CD3CN) 7.0 ppm (5); major *m/r* [CI] 231, $(5.5, M⁺), 151 [100, (M - SO₂NH₂)⁺].$

50 was also prepared by reaction of **3s** with NH3 in a similar way. The **5s** isolated was identical to that prepared from **4a** above.

Preparation of CF₃CF₂SO₂NHNa and CF₃CF₂CF₂SO₂NHNa. Compound 5a, 6.2 g (30.0 mmol), was dissolved in 50 mL of CH₃OH in a 250-mL flask, NaOH, 1.21 **g** (30.0 mmol), was added to the solution, and the solution was stirred at 22 °C until clear. The solution was concentrated by heating to a volume of ca. 8 mL, and upon slow cooling, fine crystals were formed. Filtration and drying under vacuum gave the amide CF3CF2S02NHNa: 5.8 **g** (yield 87.0%); IR (solid, KCI) 3523 (m), 3273 **(s),** 1331 **(s),** 1262 (vs), 1225 (vs), 1201 (vs), 1173 (vs), 1151 (vs), 1131 (vs), 1085 **(I),** 1032 (vs), 985 **(s),** 756 (m), 651 (m), 622 (m) cm⁻¹; ¹⁹F NMR (CD₃CN) CF₃^CF₂^BSO₂NHNa, A -78.9 (3F, s), B -117.9 ppm (2F, s); ¹H NMR (CD₃CN) 2.68 ppm (s).

Using 5b, $CF_3CF_2CF_2SO_2NHNa$ was similarly prepared in 90% yield: IR (solid, KCI) 3348 (w), 3280 (m), 1409 (m), 1336 (vs), 1295 (vs), 1256(vs), 1223(vs), 1176(vs), 1134(vs), 1112(vs),1068(vs), 1016 (vs), 999 **(s),** 856 (m), 745 (w), 687 (w), 644 (m), 498 (w), 526 (w) cm-I; t9F NMR CF3ACF2BCF2CS02NHNa A -80.4 (3F, t), B -123.7 (2F, **s),** C -114.5 ppm (2F, q), J_{AB} = 9.5 Hz; ¹H (CD₃CN) NMR 3.3 ppm (s).

Preparation of $R_1SO_2N(Na)Si(CH_3)_3 (R_f = C_2F_5, C_3F_7)$ **. In a 500**mL three-necked flask, provided with a reflux condenser with a drying tube, were placed 4.0 g (18.1 mmol) of dry powdered CF₃CF₂SO₂NHNa, 80 mL of dry CH₃CN, and 100 mL of freshly distilled $HN[Si(Me)_3]_2$. The reaction mixture was refluxed at 110 $^{\circ}$ C for 12 h. The solvent and excess HMDS were then removed by vacuum distillation. The remaining solid was dried under high vacuum at 100 °C for 4 h to give 5.3 g of the very easily hydrolyzed product (yield 99.8%).

CF3CF2SO2NNaSi(CH3)3: IR (solid, KCl) 2963 (w), 2814 (w), 2778 (w), 1282 (m), 1228 **(s),** 1136 **(s),** 1075 **(s),** 982 **(s),** 843 **(s),** 766 **(s),** 717 (m) , 644 (w), 627 (m) cm⁻¹; ¹⁹F NMR (CD₃CN) CF₃^CF₂^BSO₂NNaSi- $(CH₃)₃$, A-78.6 (3F, s), B-117.0 ppm (2F, s); ¹H NMR (CD₃CN) 0.03 ppm (CH_3, s) .

 $CF₃CF₂CF₂SO₂NNaSi(CH₃)$ ² was prepared in an identical manner and was used directly without further characterization for the preparation of 6b.

Reparation of *6.* A typical procedure for **60** is described. In a 100 mL dried stainless steel bomb was placed 5.0 g of CF₃CF₂SO₂N(Na)- SiMe_3 (17.0 mmol) in a drybox. Acetonitrile (30 mL) was added, and 4.0 **g** (19.8 mmol) of CF3CF2S02F **(4s)** was transferred into the bomb through the vacuum line. The bomb was heated at 80 $^{\circ}$ C with shaking for 2 d. The bomb was then vented, and the solution was evaporated *to* dryness. The solid product was dried at 100 °C under vacuum for 5 h to give 6a: 6.2g (yield 90.2%); IR (solid, KCI) 1367 (vs), 1335 (vs), 1223 (vs), 1181 (vs), 1098 **(s),** 980 **(s),** 780 (m), 760 (m), 746 **(s),** 649 (m), 606 (s), 525 (s) cm⁻¹; ¹⁹F NMR (CD₃CN) (CF₃^ACF₂BSO₂)₂NNa, A -78.6 (6F, **s), B** -117.0 ppm (4F, **s).**

6.' was prepared in a similar way in 95.4% yield by reacting CF3- $CF₂SO₂N(Na)SiMe₃$ with a 10% excess of $CF₃SO₂F²²$ in 95.4%: IR (solid, KCI) 1343 (vs), 1209 (vs), 1181 (vs), 1145 (vs), 1078 **(s),** 982 **(s),** 787 (m), 759 (m), 736 (m), 643 (m), 603 (m), 569 (m), 494 (m) cm-l; I9F NMR (CD3CN) CF&2F\$S02N(Na)02SCF3c, A -78.1 (3F, **s),** B -1 17.1 (ZF, **s),** C -79.0 ppm (3F, **s).**

Compound 6b was prepared from 4b and CF₃CF₂CF₂SO₂NNaSi- $(CH₃)₃$ identically to 6a in \sim 95% yield. NMR showed that the product contained a few percent of CF₃CF₂CF₂SO₂NHNa, and purification was not carried out. The sample was used directly to prepare *7b,* from which 5b formed from $CF_3CF_2CF_2SO_2NHNa$ and H_2SO_4 was easily removed during sublimation.

Compound **6b'** was prepared similarly to *6.'* in 94% yield: IR (solid, KCI) 1367 (vs), 1346 (vs), 1320 (vs), 1284 (m), 1204 (vs), 1152 (vs), 1131 (vs), 1111 (vs), 1062 (vs),943 (w), 869 (vs), 745 (vs),681(vs),651 (s) cm⁻¹; ¹⁹F NMR (CD₃CN) CF₃ASO₂N(Na)SO₂CF₂^BCF₂CCF₃D, A -79.0 (3F, **s),** B -1 13.4 (2F, q), C -123.9 (2F, **s),** D -80.4 ppm (3F, t), $J_{BD} = 9.6$ Hz.

Compound 6c' was prepared similarly to 6a by allowing CF₃SO₂N-(Na)Si(CH3)319b (21.0 **g)** and to react with **4c** (29.0 **g)** in 100 mL of CH~CNfor4dat 80°C. **Crude6c'(40g,95.3%yield)** wasrecrystallized from a minimum volume of water to give a white crystalline product after filtering and drying under vacuum at 100 °C: IR (solid, KCl) 1341 (vs), 1332 (vs), 1187 (vs), 1122 **(vs),** 1074 **(s),** 1054 **(s),** 961 **(s),** 915 (m), 877 (m), 790 (m), 751 (m), 707 (m), 684 (w), 643 (m), 609 (m), 561 (m), 512 (s) cm⁻¹; ¹⁹F NMR (CD₃CN) ClCF₂^ACF^BClCF₂^CCF₂^{D,E}SO₂N- $(Na)SO_2CF_3F$, A -63.1 (2F, m), B -130.4 (1F, m), C -112.0 (2F, m), D -111.1, E -108.9 (2F, AB pattern), F -78.9 ppm (3F, s), $J_{DB} = 22$, $J_{\text{DC}} = 6$, $J_{\text{DE}} = 257 \text{ Hz}$ ($J/\delta = 0.64$), other coupling constants not readily determined.

Compound 6g was prepared as follows. In a 500-mL three-necked flask, fitted with a reflux condenser and a magnetic stirrer, were placed 40 **g** of *6c',* 150 mL of absolute ethanol, and 15 **g** of Zn powder. With stirring, the reaction mixture was heated at 80 °C under a N_2 atmosphere for 2.5 h. After filtration, the clear solution was evaporated to dryness under high vacuum to give a white solid *6g:* 34 **g** (yield 99.5%); IR (solid, KCl) 1778 (vs, sharp), 1340 (vs), 1203 (vs), 1175 (vs), 1145 (vs), 1077 **(s),** 1042 **(s),** 1011 **(s),** 909 (m), 843 (m), 784 (m), 748 (m), 651 (m), 555 (s), 514 (s) cm⁻¹; ¹⁹F NMR (acetone-d₆) FAFBC=CFCCF₂PCF₂E. $SO_2N(Na)SO_2CF_3^G$, A-89.5 (1F, m), B-104.7 (1F, m), C-187.5 (1F, m), D = E -1 15.8 (4F, m), **G** -77.3 ppm (3F, **s),** *JAC* = 38, *JAB* = 55, $J_{AD} = 6$, $J_{CD} = 31$, $J_{BC} = 115$ Hz, other coupling constants not readily determined.

Reparation of **7.** Compound **7s** was prepared as follows. In a sublimator, 5.0 **g** of dry *6a* was dissolved in 43 **g** of H2S04 (100%). At 60 OC under high vacuum, 4.2 **g** of white solid **7s** was collected (yield 91%): mp = 42 °C; IR (solid, AgCl) 1345 (vs), 1226 (vs), 1189 (vs), 1146 (vs), 1099 (m), 984 **(s),** 783 (w), 746 (w), 650 (m), 621 (m), 532 (m) cm⁻¹; ¹⁹F NMR (CD₃CN) (CF₃^CF₂^BSO₂)₂NH, A-78.6 (6F, s), B-116.9 ppm (4F, s); ¹H NMR (CD₃CN) 8.2 ppm (NH, s).

Compound **7s'** was prepared in the same manner as **7r** (93.3% yield): mp = 39 °C; IR (solid, AgCl), 3300 (m, br), 1345 (vs), 1247 (vs), 1178 **(s),** 1145 **(s),** 1074 **(s),** 990 **(s),** 790 (m), 744 (m), 619 **(s),** 591 (w), 518 (m) cm⁻¹; ¹⁹F NMR (CD₃CN) CF₃^ACF₂BSO₂N(H)O₂SCF₃^C, A -78.2 (3F, **s),** B -1 16.1 (2F, **s),** C -78.5 ppm (3F, **s);** 'H NMR (CD3CN) 7.4 PPm **(5).**

Compound *7b* was prepared as above from **6b** (85% yield): mp = 45 OC; IR (solid, AgCI), 1345 (vs), 1294 (vs), 1225 (vs), 1157 (vs), 1078 **(s),** 946 (m), 870 (m), 685 (m), 634 (m), 598 (w) cm-l; **I9F** NMR (CD3- -113.3 ppm (4F, q), J_{AC} = 9.5 Hz; ¹H NMR (CDCl₃/CD₃CN, 10:1) 7.86 ppm (5). CN) (CF3ACF2BCF2CS02)2NH, A -80.3 (6F, t), B -123.9 (4F, **s),** C

Compound *7b'* was prepared as above from **6b'** (80% yield): mp = 38 ^oC; IR 3526 (s, br), 1341 (vs), 1214 (vs), 1148 (vs), 1132 (vs), 1109 (vs), 1066 (vs), 946 (m), 881 **(s),** 785 **(s),** 745 **(s),** 681 **(s),** 628 (vs), 569 (vs) 517 **(s)** cm-I; I9F NMR (CD3CN) **CF3AS02N(H)S02CF2BCF2CCF3D,** A -79.0 (3F, **s),** B -1 13.4 (2F, q), C -123.9 (2F, **s),** D -80.3 ppm (3F, **t**), $J_{BD} = 9.5$ Hz; ¹H NMR (CDCl₃) 7.20 ppm (s).

Compound **7c'** was prepared as follows. In a sublimator, 0.5 **g** of *6c'* was dissolved in 4 mL of H₂SO₄ (98%), and the mixture was sublimed at 120 °C, under high vacuum, giving pure white liquid 7c': 0.4 g (83.8% yield); IR (liquid, AgCl) 3509 (m), 1371 **(s),** 1342 (vs), 1321 (vs), 1185 (vs), 1148 (vs), 1122 (vs), 1075 **(s),** 1053 **(s),** 961 **(s),** 915 (m), 789 (m), 750 (m), 610 **(s),** 560 **(s),** 510 **(s)** cm-I; I9F NMR (CDCl3) ClCF2h **CFBClCF2CCF2D.ES02N(H)S02CF3F,** A -64.2 (2F, m), B -131.5 (IF, m), C -1 12.6 (2F, m), D -107.8, E -105.4 (2F, AB pattern), F -76.3 ppm (1F, s), $J_{AD} = 16$, $J_{CD} = 5$, $J_{DE} = 269$ Hz ($J/\delta = 0.54$), other coupling constants not readily determined; ${}^{1}H NMR$ (CDCl₃) 8.5 ppm (s); major m/z [CI] 463 (17.2, M⁺), 251 [100, (M - SO₂NHSO₂CF₃)⁺].

Compound **7g** was prepared as follows. In a 250-mL flask, 37 **g** of *6g* was dissolved in 70 mL of HCl(36%). A white solid NaCl deposited and was removed by filtration. On standing at 22 °C, the filtrate separated into two layers. The lower oily layer was distilled under reduced pressure to give $7g$ as a clear liquid: 30 g (yield 92.7%); bp = 65 °C/3 mmHg; IR (liquid, AgCI) 1778 **(s),** 1431 (m), 1362 (vs), 1343 (vs), 1313 (vs), 1206 (vs), 1174 (vs), 1137 (vs), 1073 **(s),** 1011 (m), 904 (m), 843 (m), 783 (w), 747 (w), 629 **(s),** 561 (w), 514 (m) cm-I; '9F NMR (CDCl3) FAF^BC=CF^CCF₂^DCF₂^ESO₂N(H)SO₂CF₃^G, A-86.8 (1F, m), B-103.6 **(1F,m),C-189.4(1F,m),D-116.2(2F,m),E-112.1** (2F,m),G-77.1 ppm (3F, s), $J_{AD} = 6.0$, $J_{AC} = 40$, $J_{AB} = 47$, $J_{BC} = 116$, $J_{BD} = 15$, J_{CE} $=$ 5, J_{CD} $=$ 36 Hz; ¹H NMR (CDCl₃) 9.0 ppm (s).

Acknowledgment. The financial support of this research by the Gas Research Institute (Grant **5084-260- 1086)** and DARPA is gratefully acknowledged.

⁽²²⁾ We thank Dr. Fred Behr, 3M Co., for generous gifts of CF₃SO₂F.